598 research outputs found

    Effect of imperfect flat earth on the vertically polarized radiation of a cylindrical reflector antenna

    Get PDF
    Cataloged from PDF version of article.The radiation of a circular cylindrical reflector antenna in the presence of imperfect flat earth is treated in an accurate manner. The boundary value problem is formulated in terms of a full-wave integral equation converted to the dual-series equations and then regularized by using analytical inversion of the static part. The resulting Fredholm second-kind matrix equation is solved numerically with guaranteed accuracy. The feed directivity is included in the analysis by using the complex source-point method. Various antenna features, which include the overall directivity, efficiency, gain, and radiated and absorbed power fractions have been calculated and compared with the free-space antenna characteristics. They show some phenomena not predicted by approximate techniques

    Integral equation anlaysis of an arbitrary-profile and varying-resistivity cylindrical reflector illuminated by an E-polarized complex-source-point beam

    Get PDF
    Cataloged from PDF version of article.A two-dimensional reflector with resistive-type boundary conditions and varying resistivity is considered. The incident wave is a beam emitted by a complex-source-point feed simulating an aperture source. The problem is formulated as an electromagnetic time-harmonic boundary value problem and cast into the electric field integral equation form. This is a Fredholm second kind equation that can be solved numerically in several ways. We develop a Galerkin projection scheme with entire-domain expansion functions defined on an auxiliary circle and demonstrate its advantage over a conventional moment-method solution in terms of faster convergence. Hence, larger reflectors can be computed with a higher accuracy. The results presented relate to the elliptic, parabolic, and hyperbolic profile reflectors fed by in-focus feeds. They demonstrate that a partially or fully resistive parabolic reflector is able to form a sharp main beam of the far-field pattern in the forward half-space; however, partial transparency leads to a drop in the overall directivity of emission due to the leakage of the field to the shadow half-space. This can be avoided if only small parts of the reflector near the edges are made resistive, with resisitivity increasing to the edge. © 2009 Optical Society of Americ

    Analysis of an arbitrary conic section profile cylindrical reflector antenna, H-polarization case

    Get PDF
    Cataloged from PDF version of article.Two-dimensional scattering of waves by a perfectly electric conducting reflector having arbitrary smooth profile is studied in the H-polarization case. This is done by reducing the mixed-potential integral equation to the dual-series equations and carrying out analytical regularization. To simulate a realistic primary feed, directive incident field is taken as a complex source point beam. The proposed algorithm shows convergence and efficiency. The far field characteristics are presented for the reflectors shaped as quite large-size curved strips of elliptic, parabolic, and hyperbolic profiles

    Accurate Simulation of Reflector Antennas by the Complex Source-Dual Series Approach

    Get PDF
    Cataloged from PDF version of article.The radiation from circular cylindrical reflector antennas is treated in an accurate manner for both polarizations. The problem is first formulated in terms of the dual series equations and then is regularized by the Riemann-Hilbert problem technique. The resulting matrix equation is solved numeridy with a guaranteed accuracy, and remarkably Little CPU time is needed. The feed directivity is included in the analysis by the complex source point method. Various characteristic patterns are obtained for the front and offset-fed reflector antenna geometries with this analysis, and some comparisons are made with the high frequency techniques. The directivity and radiated power properties are also studied

    Analysis of the elliptic-profile cylindrical reflector with a non-uniform resistivity using the complex source and dual-series approach: H-polarization case

    Get PDF
    Cataloged from PDF version of article.An elliptic-profile reflector with varying resistivity is analyzed under the illumination by an H-polarized beam generated by a complex-source-point (CSP) feed. The emphasis is done on the focusing ability that is potentially important in the applications in the optical range related to the partially transparent mirrors. We formulate the corresponding electromagnetic boundary-value problem and derive a singular integral equation from the resistive-surface boundary conditions. This equation is treated with the aid of the regularization technique called Riemann Hilbert Problem approach, which inverts the stronger singular part analytically, and converted to an infinite-matrix equation of the Fredholm 2nd kind. The resulting numerical algorithm has guaranteed convergence. This type of solution provides more accurate and faster results compared to the known method of moments. In the computations, a CSP feed is placed into a more distant geometrical focus of the elliptic reflector, and the near-field values at the closer focus are plotted and discussed. Various far- field radiation patterns including those for the non-uniform resistive variation on the reflector are also presented

    Analysis of an arbitrary-profile, cylindrical, impedance reflector surface illuminated by an E-polarized complex line source beam

    Get PDF
    Cataloged from PDF version of article.Electromagnetic scattering from a cylindrical reflector surface having an arbitrary conic section profile is studied. We assumed an electrically thin layer antenna illuminated by a complex line source in E-polarization mode. Our boundary value formulation, without loss of generality, involves an integral equation approach having impedance-type thin-layer boundary conditions. For simplicity, we also considered both faces of the reflector of the same uniform impedance value. Our computation employs the Method of Analytical Regularization (MAR) technique: the integral equations are converted into the discrete Fourier transform domain yielding two coupled dual series equations, which are then solved by the Fourier inversion and Riemann Hilbert Problem techniques. We demonstrate the accuracy and the convergence behaviors of our numerically solved MAR results that can serve as an accurate benchmark for comparison with widely used results obtained by approximate boundary conditions

    Numerical optimization of a cylindrical reflector-in-radome antenna system

    Get PDF
    Cataloged from PDF version of article.Accurate numerical optimization based on the rigorous solution of the integral equation using the method of analytical regularization is performed for the cylindrical reflector antenna in a dielectric radome. It is shown that the multiple scattering in this system is more significant for the optimum radome design than any nonplane-wave effects or the curvature of the radome. We claim that, although the common half-wavelength design is a good approximation to avoid negative effects of the radome (such as the loss of the antenna directivity), one can, by carefully playing with the radome thickness, its radius, reflector location, and the position of the feed, improve the reflector-inradome antenna performance (e.g., increase the directivity) with respect to the same reflector in free-space

    Validity and limitations of the median-line integral equation technique in the scattering by material strips of sub-wavellength thickness

    Get PDF
    Cataloged from PDF version of article.Considered is the 2-D scattering of a plane wave by a thin flat material strip. The data obtained by using the empirical method of generalized boundary conditions and singular integral equations on the strip median line are compared with the results of solving the Muller boundary integral equation that takes full account of strip thickness. Discretization of integral equations in both cases is performed using the Nystrom methods that lead to convergent algorithms. Numerical results cover E and H polarizations and two types of thin strips: conventional dielectric and metal in the optical range. The validity and limitations of approximate model are established and discussed

    Calculation of radome-enclosed aperture antenna IN 3-D

    Get PDF
    The exact mathematical model of an aperture antenna and the image theory are used to develop exact and PO integral representations of the fields radiated by radome-enclosed aperture antenna. The desired problem is reduced to finding fields of a plane wave diffracted on the "symmetrized" radome. The passage of the wave through the wall of the radome is analysed by means of geometrical optics. Caustic influence is taken into account, and the contribution of stationary phase points of reflected field to the far-side radiation is discussed. Radiation patterns for antennas with a specified ampliphase distribution enclosed in spherical and parabolic radomes are analysed. © 2010 IEEE
    corecore